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Abstract

A local Random Walk Method (RWM) for potential

problems governed by Lapalace's and Poisson's

equations is developed for two- and three-

dimensional problems. The RWM is implemented

and demonstrated in a multiprocessor parallel

environment on a Beowulf cluster of computers. A

speed gain of 16 is achieved as the number of

processors is increased from 1 to 23

Introduction

The Finite Element Method (FEM) is a widely used

numerical method for structural analysis. For large-

scale structural analysis, FEM needs extensive

preprocessing and hence may be costly and time

consuming. The Boundary Element Method (BEM) is
considered to be an alternative to FEM for a certain

class of problems 1'2. In the BEM, it is necessary to

model only the boundary, and hence BEM reduces the

dimensions of the problem. Both FEM and BEM have

their own advantages and disadvantages. Hence
methods to couple FEM and BEM have evolved J to

take advantages of both methods. A third class of
methods denoted as meshless methods 4-6 has been

developed as a replacement for FEM and BEM. All

the above-mentioned methods can be grouped as

global methods. These global methods can provide

solutions to stress, displacement, and other responses

for all the points in the structure. The global methods

also invariably need to form and invert a very large

system matrix to obtain the complete field solution.

Recently local methods such as the Random Walk

Method (RWM) were proposed in reference 7 to

obtain the solution at an arbitrary point, without

having to obtain the complete field solution. These

local methods are based on probabilistic

interpretations of certain partial differential equations.

For these local methods, there is no necessity to

discretize the domain or the boundary. Also they are

highly economical, if the solution is needed at only at

a few selected points in the structure. These methods

are simple to program and inherently parallel. This
feature of the local methods makes it most suited for

analysis in a cluster of computers, such as Beowulf

cluster s . In the cluster, several computers processors

(CPU) are networked together such that each

processor uses its own local memory but is able to

communicate with other processors by sending and

receiving messages. In the present paper the Random

Walk Method (RWM) for potential problems

(governed by Laplace and Poisson's equations) for

two- and three-dimensions is adopted from reference

7 and implemented in a Beowulf cluster of

computers. The efficiency of the RWM is

demonstrated using the Coral Beowulf cluster at

ICASE (for details see reference 9), NASA Langley
Research Center.

In this paper the technical details of the RWM are

presented first, followed by the presentation of two

examples (taken from reference 7) to verify the

development. Next a brief introduction to the Coral

Beowulf cluster at ICASE, Langley Research Center

is provided alo_ng with the implementation of the

RWM in the cluster. Next Laplace's Equation in a

multiply connected domain is analyzed in the

Beowulf cluster to measure the speed-up ratio

obtained in the multi processor cluster compared to
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the single processorimplementation.Finally,
conclusionsfromthestudyarepresented.

Technical details of the RWM

The first step in the development of the RWM for

Lapalace's and Poisson's equations for potential flow

problems is to define the It6 diffusion processes for
Brownian motion based on the mean value theorem.

The full details of the method can be found in

reference 7, so only a brief summary presented here.

The Brownian motion is a random, zigzag motion of

microscopic particles, characterized by the stationary

independent increments of non-overlapping time
intervals. For example consider a Brownian motion

process {B(t),t>O} taking place in a time interval,

s <s2<s3<t. The increments B(t)-B(s3) and

B(sz)-B(s) are independent. For a time interval,

s < t, the motion of the particle is a Gaussian vector

with mean zero and covariance matrix l(t-s),

where I denotes the identity matrix. The It6

diffusion processes starts at an arbitrary point x in a
domain _ at time t = 0 and defined for a function

g(x) in terms of average rate of change of g(B(t))

as

E[g(B(t)l" g(x) =2E_to V2g(B(s))ds ] (1)

where _ 72 d _2

= i_l--_f2 is the Laplace operator, E is the
t

expectation with the starting point B(0) = x, and

d = 2 for two-dimensions and d = 3 three-

dimensions.

The It6 formula in Equation (1), can be generalized
by replacing t with a random time T. The random

time T is defined as the time the Brownian motion

leaves the domain D for the first time starting at

x_ D. The averaged It6 formula with t replaced by
T can be written as

(2)

This is the key equation for solving the Laplace and
Poisson's equations by the RWM.

Laplace's and Poisson's Equations

Let u be the solution of the Poisson's equation

defined in a domain £2, bounded by a boundary F

V2U(X) + p(x) = 0 X _ _2 (3)

satisfying the Dirichlet boundary conditions

u(x)=_(x), x_F u (4)

where p and _ are specified functions and F is the

boundary on which the Dirichlet boundary conditions
are specified. The value of unknown function u can

be written using It6 formula in Equation (2), using

as

u(x)-- IELp<,.))d,] (5)

The right hand side of equation (5) depends only on

the expectations of the known functions _ and p,

and samples of the Brownian motion B in the time

interval (0,T). The expectation in equation (5) can

be estimated using Monte Carlo simulation, since,

generally it is not possible to evaluate the integrals

analytically. Note that the solution to Laplace's

equation can be obtained by substituting p = 0 in

equation (5).

The RWM is most suited for Dirchlet boundary

conditions given in equation (4). For mixed boundary
conditions the Brownian motion is reflected at the

Newmann boundary as described in reference 7. In

the present paper only problems with Dirchlet
boundary conditions are considered.
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Figure 1. Laplace's equation solved on multiply
connected domain

Numerical Examples in a sinale tzrocessor:

Two examples from reference 5 are selected to verify

the RWM in a single processor implementation.

These examples are described below:

Laplace's Equation on a Multiply Connected
Domain:

In the first example, Laplace's equation is solved in a

multiply connected two-dimensional domain as

shown in Figure 1. For the dimensions and boundary

conditions shown in Figure 1, the exact solution for

the potential at any point within the domain is

X

. Start the Brownian motion of a particle at

any point P(xp,yp) inside the domain

where the solution of the potential _ is to be

determined

2. Select (x,,y i) as equal to (xp,yp)

3. Select the time step At for the Brownian
motion.

4. The position of the particle at the end of the

current step can be determined using the
Brownian motion properties as

x i = x i + ,_ Random(e)

Yi = Yi + "_ Random(e)

(7)

where Random(e) is a random number

generator function that returns a random

number from the set of a normally

(Gaussian) distributed random numbers with
mean zero and unit variance. Note that the

incremental steps in the x and y directions

are different.

5. Repeat step 4 until the particle reaches either
of the two boudaries and exits the domain.

Record the value of the potential Ye at the

exit point. (The particle is said to be

absorbed at the boundary).

6. Go to step 1 for the next sample in Monte

Carlo simulation with the same starting point

(Xp, yp )

7. Repeat steps 1-5, for N number of samples.

8. Calculate the value of the potential at the

point P(xe,ye) as

1 N

'+""= (8>

221}_,+xac: = 5011---I Inf' (__xs-+o'+).._.-I-y" . .

[ 21nil L(ax_l).+aZy + '

with o_= fl = 2 +_f3

(6)

The following Monte Carlo simulation procedure was

used to calculate the potential along a circle of radius

r, for example r = R I = 0.8 (shown as the dotted line

in Figure 1).

The time step (At) and number of samples N are

the two important parameters in the RWM. Two sets

of parameters At = 0.01, N = 100 and

At = 0.0001, N = 5000 were selected to study the

effect of the parameters time step At and sample size

N on the solution. The potentials are calculated at 21

locations equally spaced around the circle of radius

0.8. Figure 2 shows the comparison of the potential

calculated using the RWM and the exact solution for

the two sets of parameters. The solution accuracy
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improves upon decreasing the time step

increasing the number of samples N.

At and reference solution in Figure 3 for At = 0.1 and the

number samples N =5000. Good agreement is

shown between the analysis results and the reference
solution.
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Figure 2. Potential (_,) along the circle of radius

r=R z =0.8

Figure 3. Potential (_) along the circle with

x 2 + y2 = (0.8)2 and z = 0.

Coral Beowulf Cluster at ICASE in Langley
Research Center

Poisson's Problem on an ellipsoid:

The second example is a Possion's problem on a

ellipsoid with Dirichlet boundary conditions. The

ellipsoid is described by the equation

¢a2 + + =1
(9)

The Dirichlet boundary conditions on the surface of

the ellipsoid are applied according to the equation

_exact = x2 + y2 + Z 2 (10)

The ellipsoid major axes are set to

unity. (a = b = c = 1.0). The potentials along a circle

xZ+y 2=r2(withr=0.8) on the plane z=0 are

calculated using the 8 step Monte Carlo simulation

procedure described in the previous example.

However, the potential at step 5 is calculated using

Coral is a 96-CPU Beowulf cluster with a dual CPU

400 MHz Pentium II server as the front end, while
two dual CPU 500 MHz Pentium III machines act as

file servers. The cluster runs with Linux operating

sysytem. There are 64 computing nodes consisting of

8 Pentium III single processors at 400 MHz, 16
Pentium III dual processors at 500 MHz, 16 Pentium

III dual processors at 800 MHz and 24 Pentium IV

single processors at 1700 MHz. The parallel programs

on Coral are written using the Message Passing
Interface (MPI) standard and are fully described in

reference 8. Three different MPI implementations are

available on Coral. While accessing the Coral cluster,

the user can request all the computing nodes, can
request few selected nodes or can specify the number

of nodes required.

_ 2 2 2
_/e - Xe + Ye + Ze (11)

The potentials are calculated at 21 locations along the

circumference of the circle. The potentials obtained in

the analysis are shown and compared with the
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Multiply Connected Domain on Laplace's Eqution

in Multi Processor Implementation

The multiply connected domain shown in Figure 1 of

example 1 is used in the multiprocessor environment

to calculate the potentials at 21 stations (locations)

along the circumference of the circle with radius,

r = R I = 0.8. The number of samples is selected as

12,000 for this case. Two type of multi processor

configurations are studied and described below.

Configuration I: Samples shared in processors: In this
configuration, for each station, the

12,000 samples are shared across

the processors. For example, in an

analysis with 4 processors, each
processor will handle 3000

samples. The total time taken for

the analysis is calculated by

summing the time taken for the 21
stations. In other words, in this

configuration the stations are

sequentially processed, while the

number of samples are run in

parallel and shared across the
cluster.

Configuration II: Stations shared in processors: In this

configuration, the 21 stations are

run in parallel on 21 processors,

while in each processor the 12,000

samples are run sequentially. The

total time taken for the analysis is

calculated by summing the time

taken in each of the 21 processors.

Configurations I and II are run on the Coral Beowulf

cluster using 1700 MHzPentium IV single processors

nodes. For both the configurations, the processor
nodes are divided so that there is one master node and

the remaining processors are slave nodes. The master
node maintains all the communication to the slave

nodes. It also receives the data from slave nodes and

compiles it for output.

For Configuration I, the number of processors is

varied from 1 to 23 including the master node. For

configuration II, 22 processors are used, one for the

master node and 21 processors for the 21 stations.

The total time taken for the multiprocessor analyses

are shown in Figure 4, where it can be seen that the

total time for the Configuration I reduced from

approximately 16 seconds to I second as the number

of processors varied from 1 to 23. The 22 processors

in configuration I take almost same the time as the

configuration II with 22 processors. This implies that

the each random walk is highly independent of the
others and little time is wasted in communication

between processors.

In order to measure the speed gain in the

multiprocessor analysis, a speed -up ratio is defined
as

Speed - up ratio =
Time taken in singleprocessor

Time taken in multiple processors

(12)

The speed-up ratio is shown in Figure 5 for

Configurations I and II. It can be seen that the speed

gain of 16 is obtained as the number of processors
increased from 1 to 22.

20
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................. i , a t i i , a
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Figure 4 : Variation of analysis time with the

number of processors
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Figure 5. Speed-up ratio in the multi processors
analyses
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SUMMARY

A random walk method for potential problems

governed by Lapalace's and Poisson's equations is

developed for two- and three- dimensional problems.
The method is demonstrated in a Beowulf cluster of

computers. A multiply connected domain problem

governed by Laplace's equation is analyzed with the

number of processors ranging from 1 to 23. Two

types of processors sharing are utilized in the parallel

implementation. Using the Multiprocessor parallel

method a speed gain of 16 is achieved as the number

processors increased from 1 to 22.
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